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Abstract 

Simulation studies were conducted to investigate whether a simple, Deming, or Passing-Bablok 

regression analysis can detect proportionality in the stock-recruitment relationship (SRR) when the 

data contain process and/or observation errors. The results indicated that the Deming and 

Passing-Bablok regressions were much more able to detect proportionality between recruitment (R) 

and spawning stock biomass (SSB) than was simple regression analysis. With simple regression 

analysis, when the number of samples was large and the observation errors in the SSB were large, the 

detection of proportionality decreased greatly. When the true slope of the regression line of ln(R) 

against ln(SSB) was less than unity, and the coefficient of variation in the observation error in R was 

large and that in SSB was small, the probability that Deming and Passing-Bablok regressions 

erroneously detected proportionality was extremely high. However, simple regression analysis 

seldom erroneously detected proportionality because it tended to underestimate the slope in response 

to process and/or observation errors. When the Deming and Passing-Bablok regressions were applied 

to data for the Japanese sardine Sardinops melanostictus (Temminck & Schlegel 1846), Pacific 

sardine Sardinops sagax (Jenyns 1842) , and chub mackerel Scomber japonicas Houttuyn 1782, the 

slopes were not statistically different from unity and no density-dependent effect could be detected.  

Introduction 

In the field of fisheries management, determining the mechanism that controls population 

fluctuations is a very important issue. In a fluctuation mechanism, the most important concept is the 

density-dependent effect.  
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Most researchers in this field have assumed that a density-dependent effect exists in the 

fluctuation mechanisms, because many stock–recruitment relationships (SRRs) show evidence that a 

density-dependent effect exists. When recruitment (R) is plotted against spawning stock biomass 

(SSB), the relationship usually shows a domed curve (Ricker 1954) or an asymptotic curve (Beverton 

and Holt 1957). When reproductive success (RPS=R/SSB) is plotted against SSB, the regression line 

shows a statistically significant decreasing trend. Therefore, it is widely believed that a 

density-dependent effect is certain. The density-dependent effect forms the basis of the concept of the 

maximum sustainable yield (MSY), which is the most important concept in fisheries resource 

management. Therefore, the existence of a density-dependent effect in SRR is a key concept 

underlying the management schemes based on the MSY.  

However, Sakuramoto (2012) pointed out that the slope of the regression line calculated in 

natural logarithm of RPS against the natural legalism of SSB showed false decreasing trend in 

response to observation errors, and he concluded that the RPS should not be used when we try to 

detect the density-dependent effect. In order to avoid the effect of observation errors that usually exist 

in the independent variable, Sakuramoto (2012) recommended the use of Deming regression analysis 

(Deming 1943) when a regression analysis of the natural logarithm of recruitment (R) against the 

natural logarithm of SSB is performed. The validity of the density-dependent effect in SRR can be 

discussed in terms of whether the slope of the regression line is statistically equal to unity or less. 

However, studies in which the Deming (1943) or Passing-Bablok regression (Passing and Bablok 

1983) is applied to SRR data are limited in number.  

The aim of this study is to determine the performance of these two methods and compare their 

results with a traditional simple regression analysis using simulation studies. Further, we applied these 

methods to actual SRR data for the Japanese sardine Sardinops melanostictus (Temminck & Schlegel 

1846), Pacific sardine Sardinops sagax (Jenyns 1842) , and chub mackerel Scomber japonicas 

Houttuyn 1782. We then compared the results and discussed the optimal SRR models.  

Materials and Methods 

First, we conducted simulation studies in order to compare the ability of simple, Deming and 

Passing-Bablok regression to detect proportionality for the slopes of three regression lines estimated 

when ln(R) was plotted against ln(SSB). The programmes used to estimate the parameters by Deming 

or Passing-Bablok regression were coded by Aoki (2009a; 2009b). The artificial data used in these 

simulations were produced according to Sakuramoto and Suzuki (2012); i.e., both process and 

observation errors were added to both R and SSB, respectively. Here process errors were defined as 

follows: The recruited fish generate the SSB through the survival process, but the survival process 

differs from year to year because natural mortality and fishing mortality change considerably from 

year to year.  



Asian Fisheries Science 28 (2015):102-116        104 

Therefore, the actual SSB values will differ from the SSB values calculated by the model used to 

describe the survival process, assuming that constant natural and fishing mortality coefficients are 

used. Furthermore, SSB produces R through the SRR. In this process, the actual R fluctuates, largely 

because of environmental conditions. We call these differences between the actual values and those 

calculated from the models “process errors”. Process errors occur in both directions, “from SSB to R” 

and “from R to SSB”. In this situation, the data for SSB and R are linked through the SRR model and 

the survival process. That is, SSBi produces Ri+1, and Ri+1 is used to construct SSBi+1, and so on. This 

process causes the well-known “time-series bias” (Walters and Martell 2004).  We produced 

artificial data using the different values of coefficients of variation (CVs) of process and observation 

errors assuming that the true SRR model is a proportional model. 

Second, we applied these three regression methods to three actual pieces of data, i.e., the SRR 

data for the Japanese sardine (Wada and Jacobson 1998), those for the Pacific sardine (Jacobson and 

MacCall 1995), and those for the chub mackerel (Yatsu et al. 2005). 

Creating artificial data with intrinsic process and observation errors 

Artificial data were created using the following process. First, the initial value of SSBi was 

randomly chosen from the range [0, 400]. Using SSBi to which a process error was added, Ri+1 was 

calculated for the proportional model, and the process and observation errors were added according to 

equation (1): 

    
       

                    
                

   
           

                                    (1)                                          

SSBi+1 containing the process and observation errors in the next generation was determined as 

follows: 
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    are the process and observation errors for SSB and R, 

respectively, with normal distributions, means of 0, and standard deviations of      
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   , respectively.                 

The levels of variation were given by coefficients of variation (CVs), and the CVs were set at 

0.1, 0.2, ..., 0.6, respectively. Each    was then calculated as               M, F, and w denote 

the natural mortality coefficient, the fishing mortality coefficient, and the mean fish weight, 

respectively. According to Sakuramoto and Suzuki (2012), we set exp(–M – F) = 0.6 and w = 1. We 

generated 10, 20, 40 or 60 pairs of artificial data sets for     
       

 and   
       

.  

The parameter estimation was conducted assuming that the SRR model follows the power 

model, 

ln R = ln a + b ln SSB                                       
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(3)  

Then, we evaluated whether or not the estimated parameter b was statistically recognised as 

unity, i.e., whether the 95% confidence interval of b was greater than 0 and less than 2. If the slope was 

recognised as unity, we presumed that the regression method can detect the true proportionality 

between R and SSB that we assumed in the simulation. In each case, we conducted 1,000 Monte Carlo 

simulations and counted the number of trials in which the slope of b was recognised as unity. 

Sensitivity tests were conducted to evaluate the opposite effects. That is, we conducted trials in which 

the Deming and Passing-Bablok regressions erroneously determined that the slope was unity, 

although in the true SRR model parameter b was 0.4, 0.6 or 0.8, respectively.  

Results 

Results of simulations
 

Table 1 shows the results of the simulations. The second to fourth columns indicate the CVs of 

the observation and process errors. We only show the results when CV= 0.2, 0.4 or 0.6. The value of b 

denotes the true slope assumed in equation (3). The figures shown in columns 6 to 17 indicate the 

number of trials that according to parameter b were statistically recognised as unity. For instance, in 

simulation number 1, which is the case in which the observation and process errors in R and SSB were 

all 0.2, the results show that in the column for b= 1, the figures 583, 942, and 967 indicate the numbers 

of trials that according to parameter b were statistically recognised as unity in each method, 

respectively.  

The results shown in the column for b= 1 (shown in column 15 to 17) indicate the following: (1) 

The power of the Deming and Passing-Bablok regressions to detect proportionality was extremely 

high compared to the simple regression analysis except in simulation numbers 19 - 24. (2) When the 

observation error in SSB was large (CV=0.6), the number of trials in which the slope of b was 

correctly recognised as unity by simple regression analysis was significantly lower than in other 

simulations (simulation numbers 55 - 81). (3) In contrast, even when the process error in SSB was 

large (CV=0.6), the slope estimated by simple regression analysis was not greatly affected compared 

to the cases in which the observation error in SSB was large (simulation numbers 3, 6, 9, 12, 15, 18, 21 

24, and 27). (4) When the true slope was less than unity, the probability that the Deming and 

Passing-Bablok regressions erroneously determined that the slope was unity was extremely high when 

the observation error in R was large (CV=0.4 or 0.6) and that in SSB was small (CV = 0.2) (simulation 

numbers 10 - 27) except in simulation numbers 12 and 15. When the true value of b was less than unity, 

simple regression analysis seldom erroneously judged that the slope was unity, because simple 

regression analysis has a tendency to underestimate the slope affected by observation and/or process 

errors (Sakuramoto and Suzuki 2012). 
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Table 1 Results of simulation using simple, Deming and Passing-Bablok Regression. The second to fourth columns indicate the CVs of observation and process errors. 

The value of b denotes the true slope assumed in equation (3). The figures shown in column 6 to 17 indicate the number of trials that showed the estimated parameter b 

was statistically recognised as unity. Number of data are all 40. 

Simulation Observation error Process error b=0.4 b=0.6 b=0.8 b=1 

No. SSB R SSB R Simple Deming P-B Simple Deming P-B Simple Deming P-B Simple Deming P-B 

1 0.2 0.2 0.2 0.2 0 242 553 0 129 478 0 88 386 583 942 967 
2 0.2 0.2 0.4 0.2 0 16 93 0 17 110 0 55 210 784 936 952 
3 0.2 0.2 0.6 0.2 0 1 5 0 2 22 0 25 98 866 930 956 
4 0.2 0.2 0.2 0.4 0 619 839 0 448 775 6 433 736 631 962 973 
5 0.2 0.2 0.4 0.4 0 214 441 0 186 431 4 315 531 743 944 967 
6 0.2 0.2 0.6 0.4 0 37 140 0 54 171 2 199 357 821 935 953 
7 0.2 0.2 0.2 0.6 0 840 962 0 761 931 36 771 916 666 967 977 
8 0.2 0.2 0.4 0.6 0 526 747 0 480 720 28 631 797 730 957 973 
9 0.2 0.2 0.6 0.6 0 221 423 0 254 470 25 491 650 771 947 966 

10 0.2 0.4 0.2 0.2 0 964 988 0 867 980 50 690 908 754 758 799 
11 0.2 0.4 0.4 0.2 0 625 805 0 508 771 40 511 739 871 852 886 
12 0.2 0.4 0.6 0.2 0 160 348 0 170 394 27 343 535 912 886 908 
13 0.2 0.4 0.2 0.4 0 964 995 0 893 981 93 817 958 730 894 933 
14 0.2 0.4 0.4 0.4 0 753 869 0 667 839 71 692 841 811 903 927 
15 0.2 0.4 0.6 0.4 0 359 573 0 354 592 53 554 701 873 912 929 
16 0.2 0.4 0.2 0.6 0 975 996 0 937 985 128 921 977 715 950 958 
17 0.2 0.4 0.4 0.6 0 847 938 0 807 905 111 840 914 766 945 957 
18 0.2 0.4 0.6 0.6 0 560 741 0 559 748 88 718 825 818 934 957 

19 0.2 0.6 0.2 0.2 0 995 798 13 996 927 248 953 968 834 487 504 
20 0.2 0.6 0.4 0.2 0 975 972 6 934 964 218 860 945 903 682 730 
21 0.2 0.6 0.6 0.2 0 779 871 4 718 845 151 761 855 928 789 823 
22 0.2 0.6 0.2 0.4 0 997 950 13 992 980 272 971 983 797 724 778 
23 0.2 0.6 0.4 0.4 0 970 982 12 936 971 237 905 952 858 793 837 
24 0.2 0.6 0.6 0.4 0 818 903 4 777 884 186 819 890 896 841 877 
25 0.2 0.6 0.2 0.6 0 996 988 11 991 993 275 985 993 777 873 897 
25 0.2 0.6 0.2 0.6 0 996 988 11 991 993 275 985 993 777 873 897 
26 0.2 0.6 0.4 0.6 0 974 989 13 952 979 253 946 978 812 883 904 
27 0.2 0.6 0.6 0.6 0 865 932 11 841 911 205 878 925 864 891 914 

28 0.4 0.2 0.2 0.2 0 13 67 0 13 81 0 85 178 172 762 815 
29 0.4 0.2 0.4 0.2 0 2 17 0 6 35 0 53 141 431 871 903 
30 0.4 0.2 0.6 0.2 0 0 1 0 1 10 0 36 100 600 893 923 
31 0.4 0.2 0.2 0.4 0 189 409 0 167 411 7 315 520 341 903 930 
32 0.4 0.2 0.4 0.4 0 69 213 0 82 243 6 245 414 502 919 939 
33 0.4 0.2 0.6 0.4 0 20 60 0 31 108 4 177 296 624 919 946 
34 0.4 0.2 0.2 0.6 0 499 740 0 458 711 21 609 772 466 955 965 
35 0.4 0.2 0.4 0.6 0 284 494 0 301 528 23 520 683 552 947 965 
36 0.4 0.2 0.6 0.6 0 122 279 0 164 331 18 415 580 648 942 962 
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Table 1(cont.) 

 
Simulation Observation error Process error b=0.4 b=0.6 b=0.8 b=1 

No. SSB R SSB R Simple Deming P-B Simple Deming P-B Simple Deming P-B Simple Deming P-B 

37 0.4 0.4 0.2 0.2 0 534 789 0 440 730 20 474 720 315 941 967 
38 0.4 0.4 0.4 0.2 0 223 443 0 222 458 16 399 583 560 940 961 
39 0.4 0.4 0.6 0.2 0 59 169 0 89 206 12 283 436 702 934 956 
40 0.4 0.4 0.2 0.4 0 705 874 0 629 836 39 657 830 453 958 973 
41 0.4 0.4 0.4 0.4 0 437 660 0 414 661 36 577 740 583 942 967 
42 0.4 0.4 0.6 0.4 0 191 355 0 225 415 27 459 608 688 939 960 
43 0.4 0.4 0.2 0.6 0 827 933 0 784 909 73 822 914 537 962 968 
44 0.4 0.4 0.4 0.6 0 644 798 0 627 796 65 749 837 608 959 977 
45 0.4 0.4 0.6 0.6 0 371 593 0 415 640 55 650 761 681 942 966 

46 0.4 0.6 0.2 0.2 0 956 984 3 926 986 120 847 960 453 828 845 
47 0.4 0.6 0.4 0.2 0 822 924 5 772 893 99 775 887 668 861 892 
48 0.4 0.6 0.6 0.2 0 518 724 2 529 717 75 669 793 787 891 911 
49 0.4 0.6 0.2 0.4 0 965 987 3 946 981 155 906 968 566 889 924 
50 0.4 0.6 0.4 0.4 0 854 941 2 826 924 132 839 913 671 895 925 
51 0.4 0.6 0.6 0.4 0 646 787 1 639 782 106 755 832 761 907 931 
52 0.4 0.6 0.2 0.6 0 977 992 5 951 983 171 945 984 612 924 953 
53 0.4 0.6 0.4 0.6 0 896 960 5 879 948 156 907 948 664 929 952 
54 0.4 0.6 0.6 0.6 0 734 846 3 752 852 132 831 895 738 920 954 

55 0.6 0.2 0.2 0.2 0 0 5 0 3 13 0 62 93 49 457 532 
56 0.6 0.2 0.4 0.2 0 0 2 0 3 10 0 51 94 175 672 748 
57 0.6 0.2 0.6 0.2 0 0 0 0 1 4 0 43 85 362 798 845 
58 0.6 0.2 0.2 0.4 0 34 131 0 47 163 5 217 325 172 736 787 
59 0.6 0.2 0.4 0.4 0 16 67 0 27 107 4 181 298 286 795 837 
60 0.6 0.2 0.6 0.4 0 6 19 0 15 57 1 146 240 419 854 883 
61 0.6 0.2 0.2 0.6 0 199 403 0 238 446 9 468 596 282 872 904 
62 0.6 0.2 0.4 0.6 0 118 288 0 161 323 9 413 541 366 880 909 
63 0.6 0.2 0.6 0.6 0 45 153 0 96 223 10 337 460 472 890 923 

64 0.6 0.4 0.2 0.2 0 100 292 0 105 298 7 311 437 79 794 861 
65 0.6 0.4 0.4 0.2 0 47 155 0 63 178 5 273 395 264 887 915 
66 0.6 0.4 0.6 0.2 0 19 60 0 34 109 7 225 325 460 907 936 
67 0.6 0.4 0.2 0.4 0 284 528 0 304 528 13 492 651 236 888 923 
68 0.6 0.4 0.4 0.4 0 169 339 0 208 396 15 433 582 371 908 930 
69 0.6 0.4 0.6 0.4 0 65 177 0 122 252 11 372 487 499 918 943 
70 0.6 0.4 0.2 0.6 0 529 721 0 529 713 28 671 788 350 941 959 
71 0.6 0.4 0.4 0.6 0 363 570 0 398 596 29 622 742 449 932 956 
72 0.6 0.4 0.6 0.6 0 203 382 0 273 452 26 539 651 527 929 961 

73 0.6 0.6 0.2 0.2 0 642 871 0 630 835 33 708 834 164 942 960 
74 0.6 0.6 0.4 0.2 0 455 703 0 475 692 35 634 767 385 937 961 
75 0.6 0.6 0.6 0.2 0 233 446 0 297 489 30 542 675 550 935 958 
76 0.6 0.6 0.2 0.4 0 751 908 1 732 883 55 777 881 322 948 963 
77 0.6 0.6 0.4 0.4 0 597 786 1 599 774 48 723 825 446 944 961 
78 0.6 0.6 0.6 0.4 0 363 583 1 430 624 46 649 751 569 941 957 
79 0.6 0.6 0.2 0.6 0 818 930 1 820 925 83 858 929 427 957 974 
80 0.6 0.6 0.4 0.6 0 706 846 1 737 851 75 820 891 512 954 975 
81 0.6 0.6 0.6 0.6 0 537 717 1 590 730 66 751 827 583 942 967 
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Table 2. Results of sensitivity tests when the number of data was set at 10, 20, 40 or 60. The second to fourth columns indicate the CVs of observation and process errors, 

and n denote the number of data. The figures shown in columns 6 to 17 indicate the number of the trials in which the estimated parameter b was statistically recognized 

as unity. The results in simulation number 55 to 81 indicate the cases when simple regressions greatly underestimated the slope. True b = 1 in all cases.  

Simulation Observation error Process error n=10 n=20 n=40 n=60 

No. SSB R SSB R Simple Deming P-B Simple Deming P-B Simple Deming P-B Simple Deming P-B 

1 0.2 0.2 0.2 0.2 730 902 954 640 936 968 583 942 967 577 940 956 
2 0.2 0.2 0.4 0.2 848 897 942 808 933 965 784 936 952 777 937 946 
3 0.2 0.2 0.6 0.2 887 894 939 871 930 967 866 930 956 842 934 944 
4 0.2 0.2 0.2 0.4 732 936 970 657 963 977 631 962 973 649 968 974 
5 0.2 0.2 0.4 0.4 805 918 955 770 945 977 743 944 967 752 962 963 
6 0.2 0.2 0.6 0.4 853 910 947 834 938 966 821 935 953 817 960 960 
7 0.2 0.2 0.2 0.6 768 944 979 673 976 986 666 967 977 679 978 987 
8 0.2 0.2 0.4 0.6 792 932 970 751 959 976 730 957 973 753 976 979 
9 0.2 0.2 0.6 0.6 826 923 962 809 943 971 771 947 966 798 968 972 

10 0.2 0.4 0.2 0.2 855 919 893 788 872 865 754 758 799 751 748 783 
11 0.2 0.4 0.4 0.2 885 898 910 874 866 916 871 852 886 854 856 875 
12 0.2 0.4 0.6 0.2 908 886 930 915 893 940 912 886 908 886 887 902 
13 0.2 0.4 0.2 0.4 826 927 937 755 929 938 730 894 933 751 894 915 
14 0.2 0.4 0.4 0.4 852 914 937 822 910 940 811 903 927 826 914 926 
15 0.2 0.4 0.6 0.4 880 902 930 867 915 947 873 912 929 859 923 939 
16 0.2 0.4 0.2 0.6 818 938 974 739 956 964 715 950 958 748 955 966 
17 0.2 0.4 0.4 0.6 836 936 964 797 948 971 766 945 957 796 946 957 
18 0.2 0.4 0.6 0.6 853 923 943 838 936 964 818 934 957 834 947 953 

19 0.2 0.6 0.2 0.2 879 899 803 853 739 661 834 487 504 828 444 474 
20 0.2 0.6 0.4 0.2 905 888 858 911 760 803 903 682 730 885 662 700 
21 0.2 0.6 0.6 0.2 921 876 901 935 819 864 928 789 823 906 772 801 
22 0.2 0.6 0.2 0.4 881 918 882 822 856 841 797 724 778 819 731 756 
23 0.2 0.6 0.4 0.4 886 906 902 866 855 874 858 793 837 866 798 826 
24 0.2 0.6 0.6 0.4 898 893 913 897 860 907 896 841 877 879 838 870 
25 0.2 0.6 0.2 0.6 860 938 931 786 914 907 777 873 897 808 866 876 
25 0.2 0.6 0.2 0.6 871 923 927 837 906 932 812 883 904 834 889 897 
26 0.2 0.6 0.4 0.6 877 910 934 867 901 929 864 891 914 863 902 913 
27 0.2 0.6 0.6 0.6 344 737 876 222 768 857 172 762 815 149 767 796 

28 0.4 0.2 0.2 0.2 587 831 914 449 851 903 431 871 903 395 861 887 
29 0.4 0.2 0.4 0.2 724 861 930 623 879 928 600 893 923 575 898 917 
30 0.4 0.2 0.6 0.2 515 846 946 370 897 943 341 903 930 351 908 927 
31 0.4 0.2 0.2 0.4 637 854 941 522 906 947 502 919 939 491 915 939 
32 0.4 0.2 0.4 0.4 735 876 945 656 909 955 624 919 946 613 921 939 
33 0.4 0.2 0.6 0.4 601 895 967 495 946 970 466 955 965 471 955 967 
34 0.4 0.2 0.2 0.6 671 891 960 579 945 967 552 947 965 550 957 960 
35 0.4 0.2 0.4 0.6 736 893 952 668 934 963 648 942 962 634 948 959 
36 0.4 0.2 0.6 0.6 730 902 954 640 936 968 583 942 967 577 940 956 
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Table 2 (cont.) 

 
Simulation Observation error Process error n=10 n=20 n=40 n=60 

No. SSB R SSB R Simple Deming P-B Simple Deming P-B Simple Deming P-B Simple Deming P-B 

37 0.4 0.4 0.2 0.2 556 901 960 393 934 971 315 941 967 271 930 951 
38 0.4 0.4 0.4 0.2 734 912 949 614 932 963 560 940 961 522 931 951 
39 0.4 0.4 0.6 0.2 810 919 943 744 930 971 702 934 956 696 929 947 
40 0.4 0.4 0.2 0.4 641 912 961 496 947 975 453 958 973 443 946 961 
41 0.4 0.4 0.4 0.4 730 902 954 640 936 968 583 942 967 577 940 956 
42 0.4 0.4 0.6 0.4 795 908 945 736 930 970 688 939 960 693 942 950 
43 0.4 0.4 0.2 0.6 669 925 971 587 966 978 537 962 968 541 962 975 
44 0.4 0.4 0.4 0.6 730 918 958 652 946 973 608 959 977 622 954 964 
45 0.4 0.4 0.6 0.6 776 913 959 729 943 966 681 942 966 704 953 958 

46 0.4 0.6 0.2 0.2 710 935 934 544 916 888 453 828 845 432 782 817 
47 0.4 0.6 0.4 0.2 815 927 934 727 904 926 668 861 892 647 850 890 
48 0.4 0.6 0.6 0.2 858 914 948 811 908 938 787 891 911 768 893 911 
49 0.4 0.6 0.2 0.4 725 930 939 620 940 929 566 889 924 559 867 891 
50 0.4 0.6 0.4 0.4 793 922 943 705 924 945 671 895 925 672 891 913 
51 0.4 0.6 0.6 0.4 845 914 938 775 918 950 761 907 931 762 905 932 
52 0.4 0.6 0.2 0.6 744 936 951 656 949 950 612 924 953 613 925 942 
53 0.4 0.6 0.4 0.6 791 922 947 716 935 959 664 929 952 685 926 937 
54 0.4 0.6 0.6 0.6 818 915 944 764 932 957 738 920 954 750 930 936 

55 0.6 0.2 0.2 0.2 137 533 739 69 473 616 49 457 532 39 437 464 
56 0.6 0.2 0.4 0.2 343 691 844 220 690 792 175 672 748 172 664 692 
57 0.6 0.2 0.6 0.2 518 789 891 389 786 867 362 798 845 322 786 826 
58 0.6 0.2 0.2 0.4 312 704 867 200 722 841 172 736 787 142 747 759 
59 0.6 0.2 0.4 0.4 437 774 890 315 791 868 286 795 837 270 804 837 
60 0.6 0.2 0.6 0.4 566 819 915 449 833 895 419 854 883 401 843 880 
61 0.6 0.2 0.2 0.6 432 812 933 305 849 918 282 872 904 282 877 893 
62 0.6 0.2 0.4 0.6 522 825 932 391 864 933 366 880 909 376 884 908 
63 0.6 0.2 0.6 0.6 609 846 940 499 881 937 472 890 923 465 901 923 

64 0.6 0.4 0.2 0.2 299 769 921 129 788 888 79 794 861 62 796 838 
65 0.6 0.4 0.4 0.2 484 834 933 326 858 921 264 887 915 241 870 896 
66 0.6 0.4 0.6 0.2 626 863 930 510 885 934 460 907 936 409 893 921 
67 0.6 0.4 0.2 0.4 434 830 937 261 878 939 236 888 923 212 891 913 
68 0.6 0.4 0.4 0.4 554 849 927 413 891 945 371 908 930 334 904 933 
69 0.6 0.4 0.6 0.4 658 864 930 534 902 949 499 918 943 478 908 933 
70 0.6 0.4 0.2 0.6 517 879 960 383 920 964 350 941 959 331 934 952 
71 0.6 0.4 0.4 0.6 594 878 955 466 922 963 449 932 956 425 936 950 
72 0.6 0.4 0.6 0.6 672 873 949 572 925 958 527 929 961 516 933 950 

73 0.6 0.6 0.2 0.2 474 878 961 247 930 968 164 942 960 119 930 947 
74 0.6 0.6 0.4 0.2 621 902 956 445 930 966 385 937 961 330 925 948 
75 0.6 0.6 0.6 0.2 732 911 953 601 932 959 550 935 958 506 924 948 
76 0.6 0.6 0.2 0.4 556 900 962 375 938 975 322 948 963 283 939 950 
77 0.6 0.6 0.4 0.4 644 902 956 511 940 966 446 944 961 422 933 956 
78 0.6 0.6 0.6 0.4 725 908 946 631 934 963 569 941 957 546 933 946 
79 0.6 0.6 0.2 0.6 609 914 964 474 946 973 427 957 974 402 949 962 
80 0.6 0.6 0.4 0.6 667 911 955 549 946 973 512 954 975 493 942 953 
81 0.6 0.6 0.6 0.6 730 902 954 640 936 968 583 942 967 577 940 956 
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Figure 1 shows the typical cases in Table 1. That is, only for the cases that the CVs are all 0.4 

and the number of samples is 40, the mean and standard deviation for the slopes estimated in 1,000 

simulations are shown for each method when true slopes are assumed to be 1.0, 0.8, 0.6 and 0.4, 

respectively. 

Sensitivity tests for the sample size
 

Table 2 shows the results of sensitivity tests when the number of data was set at 10, 20, 40 or 60. 

The value of n denotes the number of samples used in the simulations. For the simple regression, when 

the observation error in SSB was small (CV=0.2), the probability of detecting the correct slope was 

not low regardless of the observation error in R and process error in SSB and R (simulation nos. 1-27). 

When the observation error in SSB was relatively large (CV=0.4), the observation error in R was 

relatively large or large (CV=0.4 or 0.6), the probability of detecting the correct slope was not low 

(simulation nos. 38-54). However, when the observation error in SSB was large (CV=0.4 or 0.6) and 

the observation error in R was smaller (CV=0.2) than the error in SSB, the probability to detect the 

correct slope became low (simulation nos. 28-36 and 55-72). In particular, when the number of 

samples was large (n > 20), the probability to detect the correct slope was extremely low. In contrast, 

the Deming and Passing-Bablok regressions were not as sensitive to the number of data as was the 

simple regression analysis.  

Figure 2 shows the typical cases in Table 2. That is, only for the cases that the CVs in observed 

error in SSB are changed at 0.2, 0.4 and 0.6, the mean and standard deviation for the slopes estimated 

in 1,000 simulations are shown for each method. The other CVs are all same at 0.4 and the number of 

samples is 40. 

 

Fig. 1. Mean (m) and standard deviation (1.96 s.d.) for the slopes estimated in 1,000 simulations are shown for each 

method when true slopes are assumed to be 1.0, 0.8, 0.6 and 0.4, respectively. The observed and/or process CVs in R and 

SSB are all 0.4 and the number of samples is 40. 
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Fig. 2 Mean (m) and standard deviation (1.96 s.d.) for the slopes estimated in 1,000 simulations are shown for the cases 

that the CVs in observed error in SSB are changed at 0.2, 0.4 and 0.6, respectively. The other CVs are all same at 0.4 and 

the number of samples is 40. 

Table 3 Results when a simple, the Deming and Passing-Bablok regressions were applied to the actual data of Japanese 

sardine (Wada and Jacobson 1998), Pacific sardine (Jacobson and MacCall 1995) and chub mackerel (Yatsu et al. 

2005).  

 

Data Method Data used 
No.of 

sample 
estimate 

of b 

95% confidence limit of b 

P-value 

Judgment of 

Lower Higher slope b 

Japanese 
sardine 

Simple 1951-1995 45 0.769 0.585 0.953 1.16 (10
-10 

) b < 1 

Simple 1988-1991were removed 41 0.979 0.801 1.157 4.50 (10
-13 

) b = 1 

Deming 1951-1995 45 0.968 0.885 1.133 

 

b = 1 

P-B 1951-1995 45 1.086 0.905 1.245 
 

b = 1 

Pacific 
sardine 

Simple 1935-1990 56 0.781 0.578 0.984 6.09 (10
-9 

) b < 1 

Deming 1935-1990 56 0.955 0.791 1.312 

 

b = 1 

P-B 1935-1990 56 0.983 0.769 1.268 
 

b = 1 

Chub 
mackerel 

Simple 1970-2000 31 0.829 0.527 1.131 4.45 (10
-6 

) b = 1 

Deming 1970-2000 31 1.211 0.944 1.335 

 

b = 1 

P-B 1970-2000 31 1.182 0.971 1.493 
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Results applied to the actual SRR and population size data  

Figures. 3- 5 and Table 3 show the results for the regression line of ln(R) against ln(egg 

production) for the Japanese sardine (Wada and Jacobson 1998), the regression line of ln(R) against 

ln(SSB) for the Pacific sardine (Jacobson and MacCall 1995) and chub mackerel (Yatsu et al. 2005), 

when the three regression methods were used. If parameter b was not statistically different from unity, 

the acceptable model was a proportional model. That is, a density-dependent effect could not be 

detected from the SRR data. In contrast, if the parameter b was statistically recognised to be less than 

unity, this implied that a density-dependent effect was detected. 
 

The first case in Table 3 indicates the slope of the regression line estimated using the data of 

Wada and Jacobson (1998). The slope was significantly less than unity, and a density-dependent 

effect was detected. However, even when the same simple regression analysis was applied to the data 

from which 1988-1991 were removed, when extremely low recruitments occurred, the results were 

dramatically different. That is, the slope was not significantly different from unity, and this implied 

that a density-dependent effect was not detected. When the Deming and Passing-Bablok regressions 

were applied to all data, the slopes were not different from unity. The slope estimated by a simple 

regression analysis of the data with 1988-1991 removed and those estimated by the Deming and 

Passing-Bablok regressions for all data coincided well (Table 3 and Fig. 3).  

 

 

 

 

 

 

 

 

 

Fig. 3. Results of regression analyses for Japanese sardines. The black line indicates the result when a simple regression 

analysis was applied. The green line indicates the case when the data for four years from 1988-1991 were removed. The 

blue and red lines show the results of the Deming and Passing-Bablok regression analyses, respectively
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When a simple regression analysis was applied to the data for the Pacific sardine (Jacobson and 

MacCall 1995), the slope was significantly different from unity, and this implied that a 

density-dependent effect was detected. When the Deming and Passing-Bablok regressions were 

applied to the data, a density-dependent effect was not detected (Fig. 4). 

 

 

 

 

 

 

 

 

 

Fig. 4. Results of the regression analyses for Pacific sardines. The black, blue and red lines show the results of simple, 

Deming, and Passing-Bablok regression analyses, respectively.  

 

 

 

 

 

 

 

 

 

Fig. 5. Results of regression analyses for chub mackerel. Black, blue, and red lines show the results of simple, Deming, 

and Passing-Bablok regression analyses, respectively. 
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When a simple regression analysis and the Deming and Passing-Bablok regressions were 

applied to the data for the chub mackerel (Yatsu et al. 2005), the slope were not significantly different 

from unity, and this implied that a density-dependent effect was not detected (Table 3 and Fig. 5).  

Discussion 

The simulation studies indicated that the Deming and Passing-Bablok regressions were much 

more capable of detecting the proportionality between R and SSB than the simple regression analysis 

when the observation errors in SSB were large. For the simple regression analysis, the large 

observation errors in SSB and the large number of samples (in this simulation, n >20) greatly reduced 

the probability that proportionality would be detected. However, the effect was reduced when the 

number of samples was small (in this simulation, n =10).  

The probability that the Deming and Passing-Bablok regressions erroneously detected the 

proportionality in the slope was extremely high when the observation errors in R were high. This is the 

disadvantage of these methods. However, when the true value of b was less than unity, simple 

regression analysis seldom erroneously judged the slope to be unity, because the simple regression 

analysis has a tendency to underestimate the slope in response to the effect of observation and/or 

process errors (Sakuramoto and Suzuki 2012). Therefore, to avoid the disadvantage of the Deming 

and Passing-Bablok regressions methods, it is better to compare the results derived from the Deming 

and Passing-Bablok regressions methods and that derived from single regression analysis. When the 

former shows a proportionality and the latter does not show the proportionality but the slope is slightly 

less than unity, the possibility that the relationship really has a proportionality would be extremely 

high.  

When we analysed the actual data, the slopes of the regression lines for chub mackerel were not 

statistically different from unity in all three regression analyses. As we noted above, when the true 

SRR had a density-dependent effect, the probability that a simple regression analysis erroneously 

judged the slope to be unity was extremely low. That is, the result that a density-dependent effect was 

not detected in the SRR data for chub mackerel strongly indicates that a density-dependent effect does 

not really exist in the relationship of stock and recruitment.  

Similar points have been made by Maelzer (1970), Kuno (1971) and Ito (1972). They noted that 

in the attempts to detect a density-dependent effect using regression analysis, the error consistently 

acts as if it were a density-dependent effect. Under the effect of sampling error, the slope b for the 

regression of log Ni+1 on log Ni, for example, is expected to become <1 even where there is no 

density-dependent factor at all; note that Ni denotes the population in year i. Therefore, the result 

reported in this paper that no density-dependent effect exists in population change or in SRR is 

plausible. The data of Pacific sardine (Jacobson and MacCall 2005) and mackerel (Yatsu et al. 2005) 

analysed in this paper are available in the literatures inferred.  
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Conclusion 

The Deming and Passing-Bablok regressions were more reliable to detect proportionality 

between recruitment (R) and spawning stock biomass (SSB) than was simple regression analysis. 

With simple regression analysis, when the number of samples was large and the observation errors in 

the SSB were large, the probability that detects a false density-dependent effect is extremely high.  

A density-dependent effect did not play an important role in the population fluctuations and that 

a proportional model is a reasonable basic model for expressing the SRR in the Japanese sardine, 

Pacific sardine and chub mackerel.  
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