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Abstract 
 

It is well-known that pollutants affect aquatic ecosystems; however, there is little information on fish reproductive 
health as an indicator of aquatic pollution. This study reports the oogenesis and ovarian health problems in important 
fishes from different habitats potentially affected by pollution. Nine fish species caught in 2016 to 2018 were studied: 
Atherinomorus pinguis (Lacépède, 1803), Alepocephalus bicolor Alcock, 1891 and Neoscopelus microchir Matsubara, 
1943 from the mesopelagic habitats; Monacanthus chinensis (Osbeck, 1765) from the coastal habitat; and Nuchequula 
gerreoides (Bleeker, 1851), Eubleekeria splendens  (Cuvier, 1829), Pisodonophis boro (Hamilton, 1822) and Allenbatrachus 
grunniens (Linnaeus, 1758) from the estuarine habitat. Hippocampus barbouri Jordan & Richardson, 1908 under captive 
condition was used as a control. The oogenetic processes were similar in all species examined and classified into two 
phases according to the nuclear and ooplasmic characteristics: primary growth (PG) and secondary growth (SG) 
phases. The PG and SG phases were further divided into two and three substages, respectively. The occurrence of the 
ovotestis (6.66 %) in A. grunniens, suggested the environmental endocrine disruption in its habitat. Atretic oocytes 
(AO), characterised by the abnormal shape and degeneration of yolk granules and follicular complexes, in both PG and 
SG phases were observed. The AOs were found in all fishes, but the ratio was significantly higher in mesopelagic and 
estuarine fishes compared to other fishes. It is plausible that the mesopelagic and estuarine fishes have poor 
reproductive health. The results of the study warrant further investigations on water quality associated with the long-
term conservation efforts on the marine and estuarine ecosystems of Thailand. 
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Introduction 
 
Histopathology has gained increasing interest as an 
endpoint biomarker to assess fish health affected by a 
wide variety of environmental stressors. Often this 
biomarker is the integration of a large number of 
interactive physiological processes including the 
stress response to pollution and endocrine disruption 
by chemicals (Dietrich and Krieger, 2008) and is 
therefore highly sensitive. Several reviews 
summarised that gonadal tissues are especially a good 

target of histopathology because of their high 
sensitivity to environmental stresses and important 
functions as the primary organ of reproduction, which, 
once impaired, will cause a significant decline of the 
population (Spano et al., 2004; Dietrich and Krieger, 
2008; Tillitt et al., 2010). The gonadal histopathology 
has been used not only as a biomarker for adverse 
health effects caused by human activities but also as a 
useful tool for assessing an unsuccessful reproductive 
status associated with environmental conditions in 
natural habitats (Blazer, 2002; Spano et al., 2004; 



Asian Fisheries Science 33 (2020):274–286 275 

 
 
 

Tillitt et al., 2010; Senarat et al., 2015). 
 
Estuarine and marine environments in Thailand have 
been recorded as an example of productive 
ecosystems, but they suffer from industrial discharge 
and heavily loaded nutrients from domestic wastes 
(ARRI, 2003). These situations have resulted in 
eutrophication (Suvapepun, 1991; ARRI, 2003), oxygen 
deficiency, and pollution, affecting urban, industrial, 
and agricultural activities (Suvapepun, 1991). These 
situations also increase the risk of reproductive 
failures in aquatic organisms (Senarat et al., 2015; 
2017). For example, Senarat et al. (2015) demonstrated 
that the short mackerel Rastrelliger brachysoma 
Bleeker, 1851 from the Upper Gulf of Thailand showed 
reproductive disorders with a wide variety of 
histopathological alterations including ovarian atrophy 
and prominent atresia. Unfortunately, however, still, 
little information is available on the reproductive 
health status of aquatic organism in Thailand. 
 
The present study conducted detailed 
histopathological analyses on nine economically 
important fishes from different habitats to increase 
the information regarding the female reproductive 
health in fishes from estuarine and marine 
environments in Thailand. The fish species and the 
habitat they were collected from were as follows;  one 
species from the captive habitat, Hippocampus 
barbouri Jordan & Richardson, 1908, three from the 
mesopelagic habitat, Atherinomorus pinguis 
(Lacépède, 1803), Alepocephalus bicolor Alcock, 1891, 
and Neoscopelus microchir Matsubara, 1943) one from 
the coastal habitat, Monacanthus chinensis (Osbeck, 
1765), and four from the estuarine habitat, Nuchequula 
gerreoides (Bleeker, 1851), Eubleekeria splendens 
(Cuvier, 1829), Pisodonophis boro (Hamilton, 1822) and 
Allenbatrachus grunniens (Linnaeus, 1758). This study 
provides normal oogenetic processes in the fish along 

with their histopathological alterations seen under 
light microscopy. The findings further summarise the 
ratio of histopathological alterations for each species. 
This work will provide an insight into the reproductive 
health of fishes in their habitat, with emphasis on the 
importance of standardising the monitoring for the 
reproductive health. 
 
Materials and Methods 
 
Fish sampling and study areas 
 
A total of 163 fish from nine species were collected 
from different estuarine and marine habitats in 
Thailand from January to December in 2016-2018. The 
details of fish species and sampling sites are shown in 
Table 1, whereas the locations of each sampling site in 
Figure 1. The fish were preserved in Davidson’s 
fixative. All fish samples were then stored as voucher 
specimens at the Fish Biology and Aquatic Health 
Assessment Laboratory (FBA-LAB), Department of 
Marine Science, Faculty of Science, Chulalongkorn 
University, Thailand. 
 
Histological evaluations and 
histopathology 
 
The gonadal tissues were dissected out from the 
abdominal cavities of the fixed fish specimens to 
assess their morphology and developmental stages 
using a stereoscopic microscope (Nikon SMZ800N, 
Japan). The ovary was then cut into small pieces of 
about 2-3 cm2, fixed overnight in Davison´s fixative, 
and processed using the standard histological 
technique with slight modifications (Presnell and 
Schreibman, 1997; Suvarna et al., 2018). Histological 
sections with 4 µm thickness were stained with the 
conventional haematoxylin and eosin (H & E) staining.

 
 
Table 1. Samples of fishes and sampling sites for study on the reproductive health status of fish from 2016 to 2018. 
 

Habitats Fishes Sampling sites Number 

Captive  Hippocampus barbouri  
Jordan & Richardson, 1908 

The Phuket Marine Biological Centre 3 

Mesopelagic  Atherinomorus pinguis  
(Lacépède, 1803) 

Andaman Sea at the depths ranging 600–800 m  
Station 1: 7°50’20.4”N, 96°14’58.2”E  
Station 2: 7°49’54.1”N, 96°43’15.6”E  
Station 3: 7°32’22.9”N, 96°59’20.4”E   
Station 4: 7°11’24.7”N, 97°13’57.7”E 

30 

Alepocephalus bicolor  
Alcock, 1891 
Neoscopelus microchir  
Matsubara, 1943 

Coastal Monacanthus chinensis  
Osbeck, 1765 

Koh Srichang, the Upper Gulf of Thailand 10 

Estuarine Nuchequula gerreoides  
(Bleeker, 1851) 

Pranburi River estuary  
12°24.314’N, 99°58.597’E 

120 

Eubleekeria splendens  
(Cuvier, 1829) 
Pisodonophis boro  
(Hamilton, 1822) 
Allenbatrachus grunniens  
(Linnaeus, 1758) 
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Fig. 1. Map on the overall sampling sites to study the reproductive health status of fish in Thailand (A). High magnification maps 
of the sampling sites (B) Koh Srichang, (C), Pranburi River estuary, (D) and the Andaman Sea are also shown using the same 
colour symbols. 
 
 
The sex of each fish was first determined 
macroscopically and then confirmed by histology. The 
observation of the gonadal structure and 
gametogenesis was performed using a light 
microscope with the Lucia™ screen measurement 
system (Leica digital 750, Wetzlar, Germany) following 
the descriptions of Uribe et al. (2012).  
 
Prevalence in histopathological changes of gonadal 
tissues was determined following Dietrich and Krieger 
(2008). Three ovarian sections were observed under 
the light microscope with the magnification of 10x and 
40x at each developmental stage for each fish 
specimen (n = 50 cells per section). The number of 
atretic oocytes was then calculated and reported as 
percentages. 
 
Semithin section 
 
Three adults H. barbouri were chosen as the 
representative specimens to investigate the 
ultrastructure of atretic oocytes. Small fragments of 
ovarian tissue (3  3 mm2 in size) were dissected and 
fixed in a fixative containing 2.5 % glutaraldehyde in 
0.1M phosphate buffer, pH 7.4, at 4 °C for 24 h. After 

repeated washings with the phosphate buffer, tissues 
were post-fixed in 1 % osmium tetroxide and then 
processed following Rowden and Lewis (1974). 
Semithin plastic sections (500 nm) were stained with 
toluidine blue and analysed by light microscopy to 
investigate the accurate localisation and 
characterisation of atresia. 
 
Statistical analysis 
 
To evaluate differences in the prevalence of atretic 
oocytes between species, one-way analysis of 
variance (ANOVA) followed by the Tukey-Kramer test 
was applied separately to the primary and secondary 
atretic oocytes. 
 
Results 
 
Histological determination of sex 
 
The sex of fish specimens was determined based on 
macro-morphological and histology; i.e., gamete 
proportion in the gonadal tissues. Male and females 
were identified except for A. grunniens where only 
female were identified. 
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Comparative oogenesis 
 
Most of the fish exhibited an asynchronous type of 
ovarian development, in which oocytes of several 
developmental stages were found in the ovary. 
Pisodonophis boro was the only species that 
represented a synchronous type of ovarian 
development as reported previously (Na Lampang et 
al., 2021). The developing oocytes in all species could 
be classified into three, including primary growth (PG) 
phase oocytes, secondary growth (SG) phase oocytes, 
and atretic oocytes (AO) (Figs. 2–4). Note that the 
details of AO are summarised in the section of ovarian 
histopathological observations. 
 
Primary growth (PG) phase 
 
Similar oogenetic processes were seen in all fish 
examined. In the PG phase, oocytes could be further 
classified into two substages, the perinucleolar (Pn) 
and oil droplets and cortical alveolar (Oc) stages. The 
Pn stage oocytes had a large, centrally located

 nucleus with deeply stained nucleoli lying along the 
nuclear membrane (Figs. 2A–2B). The ooplasm was 
highly basophilic and contained slightly acidophilic 
Balbiani bodies (Fig. 2B). A single layer of flattened 
follicle cells surrounded the Pn stage oocytes (Figs. 
2A–2B).   
 
The Pn stage oocytes showed a dramatic increase in 
size during the development into Oc stage oocytes 
(Figs. 2C–2D). In this substage, the onset of the 
formation of two important structures, oil droplets 
and cortical alveoli, in the slightly basophilic ooplasm 
was observed. A few tiny oil droplets were observed 
near the zona pellucida (Fig. 2D) as empty vacuolar 
structures. The cortical alveoli were observed as 
conspicuous structures with slightly purple-coloured 
and ultimately dispersed near the nuclear membrane 
(Figs. 2C–2D). The folliculogenesis occurred in this 
stage, resulting in the formation of three concentric 
layers surrounding the oocyte surface — zona 
pellucida, follicle cells, and theca cells (Figs. 2C–2D). 
 
 

 

 
Fig. 2. Histology sections showing oocytes in the perinucleolar stage (Pn) [A-B] and the oil droplets and cortical alveolar stage 
[C-D] during the primary growth phase. Panel [C] is showing the degeneration of yolk granules. Abbreviations: Bb = Balbiani 
body, Bc = basophilic ooplasm, Bv = blood vessel, Ca = cortical alveoli, Fc = follicle cell, Nc = nucleolus, Nu = nucleus, Od = oil 
droplet, Pn = perinucleolar stage, Tc = theca cell, Zp = zona pellucida. Note: A = Hippocampus barbouri, B, D = Alepocephalus 
bicolor, C = Monacanthus chinensis. 
 



278 Asian Fisheries Science 33 (2020):274–286 

 

Secondary growth (SG) phase 
 
The SG phase oocytes could be clearly classified into 
three steps: early secondary growth (Esg), late 
secondary growth (Lsg) and full-grown oocyte (Fgo) 
steps (Fig. 3A). However, the SG phase was absent in 
N. gerreoides, P. boro, and E. splendens specimens 
tested in this study. 
 
The Esg stage oocytes dramatically increased its size 
due to the accumulation of yolk granules (Fig. 3B). The 
yolk granules at this stage were small, spherical in 
structure, and deeply acidophilic (Figs. 3B–3C). The oil 
droplets and cortical alveoli remained in oocytes, but 
they were fused and progressively increased in 
number and size (Fig. 3C), enclosed in the yolk 
granules (Fig. 3C). The zona pellucida became 
extremely thick (~16 µm), and the thickness of the 
single layer of follicle cells also increased to 9 µm (Fig. 
3B).

The Lsg stage oocytes further increased in diameter 
due to the high accumulation of yolk granules in the 
basophilic ooplasm (Figs. 3C–3E). It was considered to 
be an acidophilic oocyte. A well-structured zona 
pellucida and the follicle cells continuously developed 
(Fig. 3C). The follicle cells formed a monolayer of high 
epithelium (Fig. 3C).  
 
The Fgo stage oocytes reached the maximum 
diameter of up to 430 µm (Figs. 3F–3G). Large yolk 
granules were observed throughout the ooplasm in 
this step (Figs. 3A, 3G). The yolk granules were 
completely fused in some fish species, constituting 
the yolk platelets (Figs. 3F, 3H). The nucleus was 
absent because of the germinal vesicle breakdown 
(GVB), but the remained follicular complex 
continuously developed, as similarly seen in the Lsg 
stage. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Histology sections showing 
the early secondary growth step 
(Esg), late secondary growth step 
(Lsg) and full-grown oocyte step 
(Fgo) during the secondary growth 
phase [A]. [B-C]: Early secondary 
growth stage oocytes. [D-E]: late 
secondary growth stage oocytes. [F-
H]: full-grown oocyte stage oocytes. 
Abbreviations: Ca = cortical alveoli, 
Fc = follicle cell, Nc = nucleolus, Nu = 
nucleus, Od = oil droplet, Tc = theca 
cell, Yg = yolk granules, Yp = yolk 
plates, Zp = zona pellucida.  
Note: A, C, G = Monacanthus 
chinensis, B = Alepocephalus bicolor, 
D, H = Hippocampus barbouri,               
F = Allenbatrachus grunniens. 
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Ovarian histopathological observations 
 
The prevalence of ovarian histopathological 
alterations is presented in Table 1 and Figures 4–7. As 
mentioned above, testicular tissues were found only 
in A. grunniens. Normal testicular parenchyma was 
identified in the testicular tissue of most A. grunniens 
specimens (Fig. 4A); however, 6.66 % of them showed 
serious histopathological changes with the 
appearance of ovotestis (Fig. 4B). Abnormal 
erythrocytes were also observed near oocytes in the 
ovotestis (Fig. 4C). 

Atresia of oocytes was the most prevalent 
histopathological change seen in both PG and SG 
phases of ovarian development. The atretic PG phase 
oocytes had irregular shape coupled with the 
degeneration of ooplasm (Fig. 4D). During the SG 
phase, the atretic oocytes showed the irregular shape 
with loss/degeneration of their follicles (Figs. 4E–4F). 
The disintegration and resorption of the yolk granule 
were identified along with the disintegration of 
follicular complex (Figs. 4G–4H and 5A–5F). The 
semithin sections clearly showed the irregular shape 
and degradation of vacuoles in follicle cells (Fig. 4F). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Histology sections showing alteration in gonadal tissues. [A]: Normal Allenbatrachus grunniens testicular parenchyma 
containing sperms of different stages including spermatogonia (Sg), primary spermatocyte (Ps), secondary spermatocyte (Ss), 
spermatid (St) and spermatozoa (Sz). [B]: Several oocytes (circles) were found in the testis of A. grunniens. [C]: Abnormal 
erythrocytes within the blood vessel (Bv) of A. grunniens ovotestis. [D-F]: Atretic oocytes in two developmental stages: 
previtellogenic stage (Atp) and vitellogenic stage (Atv) from A. grunniens [D], Monacanthus chinensis [E] and Hippocampus 
barbouri [F]. Abbreviations: Dfc = degeneration of follicle cell, Vac = vacuoles. 
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Fig. 5. Histology sections showing the atresia in the mesopelagic fishes, e.g., Neoscopelus microchir [A-B] and Alepocephalus 
bicolor [C-F]. Abbreviations: Atp = atresia of previtellogenic stage from primary growth phase, Atv = atresia of vitellogenic 
stages from secondary growth phase, Dn = degeneration of nucleus, Vd = vacuolar degeneration, Yg = yolk granule, * = 
degeneration of yolk granules. 
 
 
Melanomacrophage centres (MMCs) were observed in 
ovarian connective tissue. MMCs were found only in 
atretic PG oocytes and in the connective tissue of the 
ovarian parenchyma (Figs. 6A–6B) in the specimens 
from estuarine habitats (Table 2). 
 
The eosinophilic granulocytes were identified in N. 
gerreoides and E. splendens. These cells had a 
diameter of 9-10 µm and large eosinophilic granules in 
the cytoplasm (Fig. 6C). These observations were 
associated with infiltration of lymphocytes (Fig. 6C). 
Lymphocytes had a large basophilic nucleus, which 
was surrounded by a relatively thin rim of cytoplasm. 
 
 
 
 

Comparative analysis of atretic 
oocytes across species and habitats 
 
Results of one-way ANOVA indicated that the number 
of follicular atresia were statistically different 
between species in both PG phase (F(8,261) = 923, p-
value < 0.001) and SG phase (F(8,261) = 3405, p-value < 
0.001) oocytes. The highest values of atresia of PG 
phase were observed in N. microchir (12.87 %) and P. 
boro (12.57 %), followed by a significantly different 
value in A. grunniens (11.03 %); the lowest value was 
observed in H. barbouri (0.17 %). For the prevalence of 
atresia of SG phase, A. bicolor and A. grunniens 
exhibited the highest value of 19.00 and 18.63 % 
respectively, followed by a significantly different value 
in N. microchir (12.77 %). Interestingly, several fishes 
including E. splendens, N. gerrelodes and P. boro did 
not show atresia in the SG phase (Fig. 7). 
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Table 2. Prevalence (%) of dominant histopathological lesions in the gonadal tissue of fishes caught from 2016 to 2018. 
 

Histopathological changes 
Ab 
(n = 10) 

Ag 
(n = 30) 

Ap 
(n = 10) 

Es 
(n = 30) 

Hb 
(n = 3) 

Mc 
(n = 10) 

Ng 
(n = 30) 

Nm 
(n = 10) 

Pb 
(n = 30) 

Ovo-testis 0 6.66 0 0 0 0 0 0 0 

Abnormal erythrocyte  0 50 0 0 0 0 0 0 0 

Melanomacrophage centre 30 100 50 0 0 0 0 30 100 

Eosinophilic granulocytes 0 0 0 100 0 0 100 0 0 

Infiltration of lymphocytes 0 0 0 100 0 0 100 0 0 
Ab = Alepocephalus bicolor, Ag = Allenbatrachus grunniens, Ap = Atherinomorus pinguis, Es = Eubleekeria splendens, Hb = 
Hippocampus barbouri, Mc = Monacanthus chinensis, Ng = Nuchequula gerreoides, Nm = Neoscopelus microchir, Pb = 
Pisodonophis boro. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Histology sections showing the 
melanomacrophage centres (MMCs) among 
the connective tissue (CNT) of 
Allenbatrachus grunniens [A-B]. [C]: 
Eosinophilic granulocytes (Eg) and 
lymphocyte infiltration (Lm) of Eubleekeria 
splendens. * = eosinophilic granule. 
 
 
 
 
 
Fig. 7. Number of atresia of previtellogenic 
stage from primary growth phase (PS) and 
atresia of vitellogenic stages from 
secondary growth phase (SS). Values 
represent means ± SE; alphabet (a-e) and 
symbol (* and #) indicate significant 
differences at P < 0.05. Abbreviations: Ab 
= Alepocephalus bicolor, Ag = Allenbatrachus 
grunniens, Ap = Atherinomorus pinguis, Es 
= Eubleekeria splendens, Hb = Hippocampus 
barbouri, Mc = Monacanthus chinensis, Ng 
= Nuchequula gerreoides, Nm = Neoscopelus 
microchir, Pb = Pisodonophis boro. 
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Discussion 
 
The histological analysis of the ovarian parenchyma 
revealed that most female fish in the present study 
have asynchronous ovarian development. This is 
possibly related to the fact that most of the analysed 
species have multiple spawning seasons and 
protracted spawning periods (Dietrich and Krieger, 
2008). The synchronous development ovary was 
observed only in P. boro, suggesting that it is a single 
spawning species. This hypothesis requires further 
studies on the reproductive cycle and spawning 
season.  
 
The absence of SG phase oocytes in N. gerreoides, P. 
boro, and E. splendens is possibly related to the fact 
that all of them are migratory fish (Blaber, 1997), for 
which the estuarine is considered to be a putative 
nursery area. Adults of these species may spawn in 
the coastal area, and larvae are passively transported 
toward the estuaries. This hypothesis can be verified 
by life history studies with broad sampling from the 
estuarine populations (Elliott and Hemingway, 2002; 
Potter et al., 2015). 
 
The common oogenic features identified in this study 
are generally inconsistent with those of other 
teleosts. A single and large central nucleus and 
nucleoli near the nuclear membrane in the Pn stage 
has been reported in other teleost species (Selman 
and Wallace, 1986; Blazer, 2002; Patino and Sullivan, 
2002; Patino et al., 2003). The basophilic nature of 
ooplasm of PG phase oocytes is attributed to the 
synthesis of RNAs as well as the abundant ribosomes 
and mitochondria in the ooplasm (Wallace and 
Selman, 1990). And two important structures 
observed in SG phase oocytes, the lipid droplet and 
cortical alveoli, have been reported in other teleosts 
with their potential functions (Wallace and Selman, 
1990; Senarat et al., 2017). Namely, the oil droplets 
support the metabolic activity for embryonic 
development additionally to the yolk granules (Chen et 
al., 2006), whereas cortical alveoli prevent polyspermy 
after ovulation (Nagahama, 1983; Selman and Wallace, 
1986; Selman et al., 1988; Abascal and Medina, 2005). 
The migration of nucleus to the animal pole during the 
Lsg step (germinal vesicle migration; GVM) is 
observed in other species such as Fundulus 
heteroclitus (Linnaeus, 1766),  (Kuchnow and Scott, 
1977) and Thunnus orientalis (Temminck & Schlegel, 
1844), (Chen et al., 2006). This aspect is common for 
all fishes. Finally, the coalescence of yolk globules is 
known as the indicator of oocyte maturation during 
the SG phase (Selman and Wallace, 1986; Selman et 
al., 1993). Since no nucleus is present at this point, the 
final oocyte maturation can be easily assessed in the 
teleost fish using this morphological marker (West, 
1990). 
 
The histological examination found that 6.66 % of A. 
grunniens specimens have ovotestis, which is the first 
report from Thailand. The presence of intersex in fish 

has been strongly associated with endocrine-
disrupting chemicals (EDCs) in the environment (Allen 
et al., 1999; Vethaak et al. 2005; Vajda et al. 2008; 
Yoon et al., 2008; Muneeb, 2017), including estrogen in 
human wastewater effluent (Jobling et al., 1998) and 
industrial discharge (Van Aerle et al. 2001; Tetreault et 
al. 2011). For example, the occurrence of intersex in 
Rutilus rutilus (Linnaeus, 1758) captured at 45 sites in 
UK rivers was strongly associated with estrogen 
concentrations predicted from upstream estrogen 
inputs (Jobling et al., 2006). A similar tendency was 
reported by Antuofermo et al. (2017), they found 
excessive intersex gonads in wild fish populations: 
Chelon labrosus (Risso, 1827); Liza aurata (Risso, 1810) 
and Mugil cephalus Linnaeus, 1758, inhabiting 
xenoestrogen-polluted coastal and estuarine 
environments in Sardinia island. It is hence likely that 
the ovotestis of A. grunniens may be related to 
exposure to environmental pollutants with an 
endocrine disruption/estrogenic potential. Direct 
monitoring of estrogenic substances will be the next 
step to understand the effect of estrogen 
contamination on fish reproduction in these areas. 
Also, Harris et al. (2011) reported that the reproductive 
performance (fry production) of R. rutilus is reduced 
up to 76 % in intersex individuals. Assessment of A. 
grunniens reproductive ability is also warranted. In 
contrast, it is also possible that the presence of 
oocytes in the testis is a normal feature in this 
species. While we have a preliminary observation that 
this toadfish is a dioecious species (Mitparian et al., 
2018), the prevalence and physiological significance of 
ovotestis should be carefully examined with 
comprehensive sampling. 
 
The present study also found atretic oocytes with 
irregular shape and degenerated yolk granules in both 
PG and SG phases (Table 2 and Figures 4-5). This is the 
first description on atretic oocytes in these nine 
important fish species from Thailand. The 
histopathological characteristics of the atretic 
oocytes are similar to those reported for Brycon 
orthotaenia G Günther, 1864 (Goncalves et al., 2006), 
and several other fishes (Johnson et al., 1988; Blazer, 
2002; Jamieson, 2009).  Since we observed atretic 
oocytes in apparently healthy M. chinensis and H. 
barbouri (Table 2), this situation might be a normal 
physiological occurrence. However, atretic oocytes 
have also been associated to environmental stress 
like unfavourable temperature and pH as well as high 
anthropogenic pressure including environmental 
contaminants (Cross and Hose, 1988; Johnson et al., 
1988; Kirubagaran and Joy, 1988; Blazer, 2002). In 
particular, EDCs are proposed as the major cause of 
increased atretic oocytes and follicular cell 
degeneration (Pedlar et al., 2002; Kinnberg and Toft, 
2003; Diniz et al., 2005; Hanna et al., 2005). 
Specifically, atrazine (Spano et al., 2004; Tillitt et al., 
2010), 17β-estradiol (E2) (Wood and van Der Kraak, 
2002), and many other EDCs have been reported to 
increase atretic oocytes. The prevalence of atretic 
oocytes also justifies future studies on EDCs.   
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An important finding of the atretic oocytes in this 
study is that their highest prevalence was observed in 
mesopelagic (N. microchir and A. bicolor at SG phase) 
and some estuarine fishes (P. boro at PG phase and A. 
grunniens). Mesopelagic fishes live in the depth range 
from 200  to 1,000 m (Gartner et al., 1997), typically at 
the edge of the continental slope where food 
resources are generally limited (Hopkins and Gartner, 
1992; Close et al., 2013; Bode and Hernandez-Leon, 
2018). Mesopelagic fish, therefore, exhibit the 
resource partitioning (Hopkins and Gartner, 1992), 
which octen negatinelf accect their reproductive 
activity (Young, 2003; Brown-Peterson et al., 2011). It 
is therefore possible that the low feeding rate is 
responsible for the prevalence of atretic oocytes in N. 
microchir and A. bicolor as proposed by Billard (1992). 
The concentrations of anthropogenic pollutants such 
as mercury and other trace metals are not available in 
Andaman seas, although these are found in the deep-
sea environment (Looser et al., 2000). 
 
Several reports have documented that the Pranburi 
River estuary has been contaminated with 
anthropogenic wastes, especially lead and petroleum 
hydrocarbon in sediment (Cheevaporn and Menasveta, 
2003; Wattayakorn, 2012). There are many previous 
observations that heavy metals exert adverse effects 
on fish reproduction (Ebrahimi and Taherianfard, 
2011). Since heavy metals tend to bind to the soil 
particle (U.S. EPA, 2009), it is assumed that benthic 
species, P. boro and A. grunniens, were affected by 
heavy metals more strongly than pelagic fishes, N. 
gerreoides and E. splendens.  
 
Melanomacrophage centres (MMCs) have been 
commonly used as environmental stress biomarkers 
in fishes (Agius and Roberts 2003, Robert, 2012). In 
this study, large MMCs were observed in ovarian 
parenchyma of mesopelagic and some estuarine 
fishes (Table 2 and Figure 6), suggesting that these 
fishes are living under certain environmental stress 
conditions. However, many previous studies claim 
that MMCs are formed by various factors including life 
history (i.e. sex, developmental stage and spawning 
seasons) or environmental changes (i.e. temperature 
and UV exposure) (Blazer et. al, 1997; Kumar and 
Singh, 2016; Natalie and Daniel, 2017). Parasites also 
cause the formation of MMCs (Alvarez-Pellitero et al., 
2007). Continuous monitoring associated with 
environmental pollution levels will provide further 
provide insights into the empirical evidence for the 
use of MMCs as the pollutant marker. 
 
The histopathological analysis also demonstrated that 
N. gerreoides and E. splendens have eosinophilic 
granulocytes (Ecs) in their ovarian tissues as reported 
in some fishes (Drury, 1915; DeMartini, 2017). The Ecs 
are sometimes referred to as mast cells, which are a 
type of immune cells (Drury, 1915). In addition, 
Besseau and Faliex (1994) proposed that the 
cytoplasmic granules of Ecs contain lytic enzymes, 
and thus Ecs correspond to phagocytic macrophages 

in gonads activated by environmental pollutants and 
diseases (Drury, 1915). The presence of Ecs in N. 
gerreoides and E. splendens collected form estuarine 
habitats might be related to the contamination from 
industrial and agricultural discharges in this area. 
 
Conclusion 
 
The present study showed ovarian structures and 
their histopathological alterations of nine important 
fishes in Thailand. The first observation of ovotestis in 
Thailand (A. grunniens) warrants the investigation of 
endocrine-disrupting chemicals in the Pranburi River 
estuary. Also, the high prevalence of atretic oocytes 
in the mesopelagic and estuarine fishes suggests a 
high level of pollution in these habitats and/or high 
susceptibility of these fishes to environmental stress. 
Further studies should be conducted to regularly 
monitor the pollutant flux, especially the endocrine-
disrupting chemicals, in these areas. It is also 
important to evaluate the effect of the important 
heavy metals (iron, cadmium, zinc and manganese) on 
histopathological changes such as ovotestis and 
atretic oocytes identified in this study, the presence 
of which may be a normal feature to a certain extent. 
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